5-2 Videos Guide

5-2a

- Area of a surface of revolution
- About the x-axis: $S=\int 2 \pi y d s$
- About the y-axis: $S=\int 2 \pi x d s$
- $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$, whichever is most convenient Limits of integration: $a \leq x \leq b$ for $y=f(x)$; for $c \leq y \leq d$ for $x=g(y)$
5-2b
Exercise:
- Find the exact area of the surface obtained by rotating the curve about the x-axis.
- $y=\sqrt{1+e^{x}}, \quad 0 \leq x \leq 1$
- $y=\frac{x^{3}}{6}+\frac{1}{2 x^{\prime}}, \quad \frac{1}{2} \leq x \leq 1$

5-2c
Exercise:

- The given curve is rotated about the y-axis. Find the area of the resulting surface.
$x^{2 / 3}+y^{2 / 3}=1, \quad 0 \leq y \leq 1$

